

RNG Interconnect Guideline A Process for "Getting to Yes"

Dan Dessanti/Bob Wilson Northeast Gas Association New England Pipeline Safety Seminar 2018

About NGA

- Non-profit trade association
- Local gas utilities (LDCs) serving New England, New York, New Jersey and Pennsylvania
- Several interstate pipeline companies
- LNG importers and LNG trucking companies
- Over 380 "associate member" companies, from industry suppliers and contractors to electric grid operators
- www.northeastgas.org

NGA Function Areas

Education & Training

RD&D

Advocacy

Guide Sponsors and Participants

- Sponsors
 - Central Hudson
 - Con Edison
 - National Grid
 - NYSEG/RGE
 - Orange and Rockland
- Project Manager
 - NGA
- Consultant
 - GTI

Can We Reasonably & Rationally Meet The Challenges of The Second "Great Conversion"

A purge burner igniting manufactured gas being replaced in a main by natural gas during the 'great conversion' in 1952

- Supply Mix Is Changing......
- Renewable Gas is a reality and an important part of the nations supply future
- Clean-up Technology has evolved

Guideline Development Process

- ► Kickoff Discussion 09/29/2016
- ▶ Interim Report Review NYS Utilities 11/29/2016
- Draft Guide Review NYS Utilities 04/10/2017
- Final Guide Review & Revision- 09/22/2017
- ▶ Discussion with NYSDPS, NYSERDA 01/24/2018
- ▶ Review with RNC & ABC 06/2018

Policy Collides with Science

- RNG is already accepted and used in New York and in the US.
- For example, introduction of RNG directly into a gas distribution system has been successfully practiced for over 30 years from the Staten Island, NY landfill 4-7 MMSCF/Day recovered and processed followed by direct injection into the local distribution system.
- Project developers are in discussion with gas distributors throughout NE and the northeast but the processes, requirements, and agreements are not uniform, resulting in commercial and technical uncertainty for both parties.
- A consistent approach will bring certainty for all parties involved in negotiations with regard to safety, reliability, continuity, and interchangeability.

What, Why How Approach

What are LDC concerns?

- Why are LDC's concerned?
- How can we address these concerns?

The What?

- HHV/SG
- Total Inerts
- Moisture
- Oxygen
- Sulfur Compounds / Total Sulfur
- Trace Constituents
- Supply Reliability

The Why?

- ▶ HHV/SG Interchangeability, Therm Billing
- ▶ Total Inerts Interchangeability, Integrity
- Moisture System Integrity
- Oxygen System Integrity, Interchangeability
- Sulfur Compounds System Integrity, Safety
- ▶ Trace Constituents End Use, Safety
- Supply Reliability gas system supply balancing

Constituents of Concern Summary

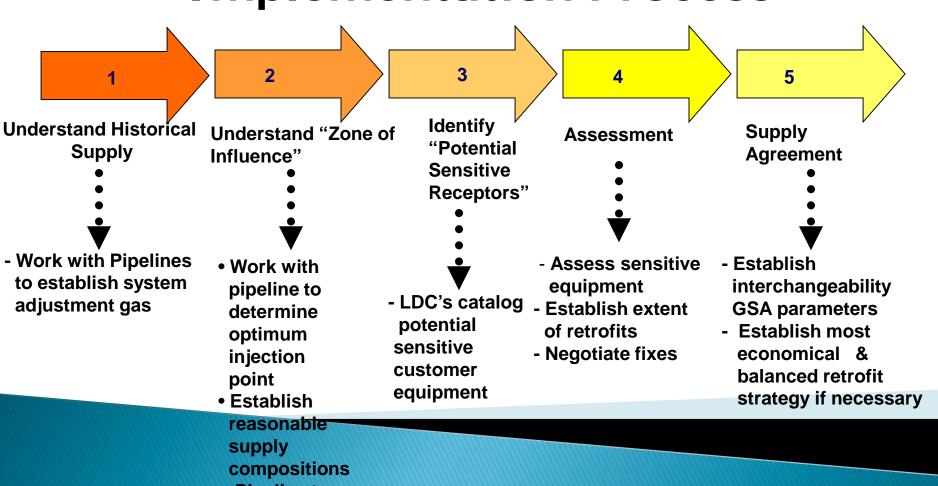
 Potential COCs that may be found in raw gas from specific feedstocks for RNG production – focus analysis on reasonable COC's

Parameter	Landfill	Dairy, Swine	WWTP	Food Waste	Gasifier, Syngas
Water Content		Swille		vvaste	Syrigas
Sulfur, including Hydrogen Sulfide					
Hydrogen					
Carbon dioxide					
Nitrogen					
Oxygen					
Ammonia					
Biologicals					
Mercury					
Volatile metals					
Siloxanes					
Volatile Organic Compounds					
Semi-volatile Organic Compounds					
Halocarbons					
Aldehydes and Ketones					
Polychlorinated biphenyls (PCBs)					
Pesticides					

Making Gas "Constituent Equivalent"

 Observed Ranges Found in Fully Upgraded RNG from Landfills, Dairy Farms, and WWTPs

Dawa wa aka w	AGA 4A Reported	Range Found in Upgraded	Range Found in Upgraded	Range Found in Upgraded	Range Found in
Parameter	Range	Landfill-Derived RNG	Dairy-Derived RNG	WWTP-Derived RNG	Natural Gas Samples
Total Sulfur	maximum 0.5 to 20	BDL (0.003) to 0.32	BDL (0.003) to 0.31	BDL (0.003) to 0.01	BDL (0.003) to 1.1
	grains per 100 SCF	grains per 100 SCF	grains per 100 SCF	grains per 100 SCF	grains per 100 SCF
Hydrogen Sulfide	maximum 0.25 to 1.0	BDL (0.003) to 0.03	BDL (0.003 ppmv)	BDL (0.003) to 0.01	BDL (0.003) to 0.36
	grains per 100 SCF	grains per 100 SCF	выс (0.003 ррппу)	grains per 100 SCF	grains per 100 SCF
Hydrogen	max. 0.04 to 0.1 vol%	BDL (0.1) to 1.0 vol%	BDL (0.1 vol%)	BDL (0.1 vol%)	BDL (0.1) to 0.3 vol%
Carbon dioxide	maximum 1 to 3 vol%	BDL (0.03) to 2.2 vol%	0.06 to 0.95 vol%	0.49 to 0.66 vol%	BDL (0.03) to 2.6 vol%
Nitrogen	maximum 1 to 4 vol%	0.5 to 9.5 vol%	0.20 to 7.81 vol%	BDL (0.03 vol%)	BDL (0.03) to 12.7 vol%
	max. 0.001 to 1 vol%				
Oxygen	majority: 0.1 to 0.2	BDL (0.03) to 1.3 vol%	BDL (0.03) to 1.99 vol%	BDL (0.03 vol%)	BDL (0.03) to 1.2 vol%
	vol%				
Diluents + Inerts	maximum 3 to 6 vol%	0.6 to 10.0 vol%	0.37 to 10.65 vol%	0.49 to 0.66 vol%	0.3 to 12.7 vol %
Ammonia	none	BDL (10 ppmv)	BDL (10 ppmv)	BDL (10 ppmv)	BDL (10 ppmv)
Total Bacteria	none	2.46x10 ⁴ to 3.29x10 ⁸	3.28x10 ³ to 1.02x10 ⁷	9.85x10 ⁵ to 2.14x10 ⁶	3.47x10 ⁴ to 6.39x10 ⁷
		# per 100 SCF			
Mercury	none	BDL (0.01) to 0.3 μg/m ³	BDL $(0.01 \mu g/m^3)$	BDL $(0.01 \mu g/m^3)$	BDL (0.01) to 0.06 μg/m ³
Other Volatile Metals3	none	BDL (30) to 250 μg/m ³	BDL (20 μg/m³)	BDL to 229 μg/m³	BDL (30) to 213 μg/m ³
Other volatile ivietaiss		(Cr, Cu, Mn, Pb, Sb, Zn)	BDE (20 μg/111)	(Zn)	(As, Cu, Pb, Zn)
Siloxanes (D4)	none	BDL ¹ to 6.0 mg Si/m ³	BDL ¹	BDL (0.1 mg/m^3)	BDL ¹
			BDL ² to 0.1 ppmv		BDL ² to 471 ppmv
Non-Halogenated Semi-Volatile	none	BDL ² to 1.4 ppmv	(BTEX, N-nitroso-di-n-	BDL ² to 6 ppbv (phthalate)	(1,3-butadiene, acrylonitrile,
and Volatile Compounds	Hone	(BTEX, phthalates)	propylamine, benzyl	BBE to o ppsv (pritingiate)	BTEX)
			alcohol)		BTEX
		BDL (0.1) to 3.6 ppmv			
Halocarbons	none	(Freons, chloroethane,	BDL (0.1 ppmv)	BDL (0.1 ppmv)	BDL (0.1 ppmv)
		vinyl chloride)			
Aldehyde/Ketones3	none	BDL (10) to 522 ppbv	not tested	BDL (10 ppbv)	BDL (10) to 103 ppbv
Polychlorinated biphenyls (PCBs)	none	BDL (0.01 ppbv)	BDL (0.01 ppbv)	BDL (0.01 ppbv)	BDL (0.01 ppbv)
Pesticides	none	BDL (0.0006) to 0.003 ppbv	BDL (0.0004) to 0.5 ppbv	BDL (0.0006) to 0.006 ppbv	BDL (0.0006 ppbv)
		(4,4'-DDT)	(gamma-chlordane)	(4,4'-DDT)	


The How.....

- Establish trace constituent product equivalency
- Explore opportunities & common ground
- Willingness to understand each others concerns & work towards solutions
- Finding ways to say "yes" rather than imposing overly restrictive requirements based on operational uncertainty

RNG Interchangeability Implementation Process

- Pipeline to model influence on system including therm

zones

How to Achieve Success.....

- Don't rely on published tariff values alone, gas within distribution systems may be historically different than broad ranges in pipeline tariffs
- Work with Utilities to understand chemical properties of gas in the area of anticipated injection (adjustment gas).
- Work with Utilities to balance processing requirements and potential opportunities for contractual blending to meet HHV requirements.
- Share as much information as possible to provide operational certainty that the processed gas stream is similar to pipeline gas flowing in the area of injection.

How to Achieve Success.....

- Optimize start-up and operational monitoring protocols.
- Develop "surrogate" monitoring parameters as process indicators that drive the need for more exotic testing if necessary.
- Leverage application of similar processes in similar situations – don't reinvent the wheel!
- Establish mutually agreeable testing and monitoring parameters, limits, test methods and procedures to deal with anomalies.

The Guideline Combines Good Science & Common Sense.....

